Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Orphanet J Rare Dis ; 18(1): 76, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2297140

ABSTRACT

BACKGROUND: Barth syndrome (BTHS) is a rare genetic disease that is characterized by cardiomyopathy, skeletal myopathy, neutropenia, and growth abnormalities and often leads to death in childhood. Recently, elamipretide has been tested as a potential first disease-modifying drug. This study aimed to identify patients with BTHS who may respond to elamipretide, based on continuous physiological measurements acquired through wearable devices. RESULTS: Data from a randomized, double-blind, placebo-controlled crossover trial of 12 patients with BTHS were used, including physiological time series data measured using a wearable device (heart rate, respiratory rate, activity, and posture) and functional scores. The latter included the 6-minute walk test (6MWT), Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue score, SWAY Balance Mobile Application score (SWAY balance score), BTHS Symptom Assessment (BTHS-SA) Total Fatigue score, muscle strength by handheld dynamometry, 5 times sit-and-stand test (5XSST), and monolysocardiolipin to cardiolipin ratio (MLCL:CL). Groups were created through median split of the functional scores into "highest score" and "lowest score", and "best response to elamipretide" and "worst response to elamipretide". Agglomerative hierarchical clustering (AHC) models were implemented to assess whether physiological data could classify patients according to functional status and distinguish non-responders from responders to elamipretide. AHC models clustered patients according to their functional status with accuracies of 60-93%, with the greatest accuracies for 6MWT (93%), PROMIS (87%), and SWAY balance score (80%). Another set of AHC models clustered patients with respect to their response to treatment with elamipretide with perfect accuracy (all 100%). CONCLUSIONS: In this proof-of-concept study, we demonstrated that continuously acquired physiological measurements from wearable devices can be used to predict functional status and response to treatment among patients with BTHS.


Subject(s)
Barth Syndrome , Humans , Time Factors , Cardiolipins , Fatigue
2.
J Clin Med ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2071536

ABSTRACT

BACKGROUND: Lung ultrasound (LUS) is gaining consensus as a non-invasive diagnostic imaging method for the evaluation of pulmonary disease in children. AIM: To clarify what type of artifacts (e.g., B-lines, pleural irregularity) can be defined normal LUS findings in children and to evaluate the differences in children who did not experience COVID-19 and in those with recent, not severe, previous COVID-19. METHODS: LUS was performed according to standardized protocols. Different patterns of normality were defined: pattern 1: no plural irregularity and no B-lines; pattern 2: only mild basal posterior plural irregularity and no B-lines; pattern 3: mild posterior basal/para-spine/apical pleural irregularity and no B-lines; pattern 4: like pattern 3 plus rare B-lines; pattern 5: mild, diffuse short subpleural vertical artifacts and rare B-lines; pattern 6: mild, diffuse short subpleural vertical artifacts and limited B-lines; pattern 7: like pattern 6 plus minimal subpleural atelectasis. Coalescent B-lines, consolidations, or effusion were considered pathological. RESULTS: Overall, 459 healthy children were prospectively recruited (mean age 10.564 ± 3.839 years). Children were divided into two groups: group 1 (n = 336), those who had not had COVID-19 infection, and group 2 (n = 123), those who experienced COVID-19 infection. Children with previous COVID-19 had higher values of LUS score than those who had not (p = 0.0002). Children with asymptomatic COVID-19 had similar LUS score as those who did not have infections (p > 0.05), while those who had symptoms showed higher LUS score than those who had not shown symptoms (p = 0.0228). CONCLUSIONS: We report the pattern of normality for LUS examination in children. We also showed that otherwise healthy children who recovered from COVID-19 and even those who were mildly symptomatic had more "physiological" artifacts at LUS examinations.

3.
Echocardiography ; 39(9): 1198-1208, 2022 09.
Article in English | MEDLINE | ID: covidwho-1968089

ABSTRACT

BACKGROUND: The ratio of tricuspid annular plane systolic excursion (TAPSE) to pulmonary artery systolic pressure (PASP) is a validated index of right ventricular-pulmonary arterial (RV-PA) coupling with prognostic value. We determined the predictive value of TAPSE/PASP ratio and adverse clinical outcomes in hospitalized patients with COVID-19. METHODS: Two hundred and twenty-nine consecutive hospitalized racially/ethnically diverse adults (≥18 years of age) admitted with COVID-19 between March and June 2020 with clinically indicated transthoracic echocardiograms (TTE) that included adequate tricuspid regurgitation (TR) velocities for calculation of PASP were studied. The exposure of interest was impaired RV-PA coupling as assessed by TAPSE/PASP ratio. The primary outcome was in-hospital mortality. Secondary endpoints comprised of ICU admission, incident acute respiratory distress syndrome (ARDS), and systolic heart failure. RESULTS: One hundred and seventy-six patients had both technically adequate TAPSE measurements and measurable TR velocities for analysis. After adjustment for age, sex, BMI, race/ethnicity, diabetes mellitus, and smoking status, log(TAPSE/PASP) had a significantly inverse association with ICU admission (p = 0.015) and death (p = 0.038). ROC analysis showed the optimal cutoff for TAPSE/PASP for death was 0.51 mm mmHg-1 (AUC = 0.68). Unsupervised machine learning identified two groups of echocardiographic function. Of all echocardiographic measures included, TAPSE/PASP ratio was the most significant in predicting in-hospital mortality, further supporting its significance in this cohort. CONCLUSION: Impaired RV-PA coupling, assessed noninvasively via the TAPSE/PASP ratio, was predictive of need for ICU level care and in-hospital mortality in hospitalized patients with COVID-19 suggesting utility of TAPSE/PASP in identification of poor clinical outcomes in this population both by traditional statistical and unsupervised machine learning based methods.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Adult , Cyclophosphamide/analogs & derivatives , Echocardiography, Doppler , Humans , Prognosis , Prospective Studies , Unsupervised Machine Learning , Ventricular Function, Right
4.
Curr Treat Options Oncol ; 22(6): 47, 2021 04 17.
Article in English | MEDLINE | ID: covidwho-1188176

ABSTRACT

OPINION STATEMENT: Prostate cancer is the second leading cause of cancer death in men, and cardiovascular disease is the number one cause of death in patients with prostate cancer. Androgen deprivation therapy, the cornerstone of prostate cancer treatment, has been associated with adverse cardiovascular events. Emerging data supports decreased cardiovascular risk of gonadotropin releasing hormone (GnRH) antagonists compared to agonists. Ongoing clinical trials are assessing the relative safety of different modalities of androgen deprivation therapy. Racial disparities in cardiovascular outcomes in prostate cancer patients are starting to be explored. An intriguing inquiry connects androgen deprivation therapy with reduced risk of COVID-19 infection susceptibility and severity. Recognition of the cardiotoxicity of androgen deprivation therapy and aggressive risk factor modification are crucial for optimal patient care.


Subject(s)
Antineoplastic Agents, Hormonal/adverse effects , Cardiovascular Diseases/epidemiology , Prostatic Neoplasms/drug therapy , Androstenes/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , COVID-19/epidemiology , COVID-19/pathology , Cardiotoxicity , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/ethnology , Disease Susceptibility , Gonadotropin-Releasing Hormone/agonists , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Health Status Disparities , Humans , Male , Prostatic Neoplasms/ethnology , SARS-CoV-2
5.
Front Immunol ; 11: 1648, 2020.
Article in English | MEDLINE | ID: covidwho-685338

ABSTRACT

Cytokine storm is an acute hyperinflammatory response that may be responsible for critical illness in many conditions including viral infections, cancer, sepsis, and multi-organ failure. The phenomenon has been implicated in critically ill patients infected with SARS-CoV-2, the novel coronavirus implicated in COVID-19. Critically ill COVID-19 patients experiencing cytokine storm are believed to have a worse prognosis and increased fatality rate. In SARS-CoV-2 infected patients, cytokine storm appears important to the pathogenesis of several severe manifestations of COVID-19: acute respiratory distress syndrome, thromboembolic diseases such as acute ischemic strokes caused by large vessel occlusion and myocardial infarction, encephalitis, acute kidney injury, and vasculitis (Kawasaki-like syndrome in children and renal vasculitis in adult). Understanding the pathogenesis of cytokine storm will help unravel not only risk factors for the condition but also therapeutic strategies to modulate the immune response and deliver improved outcomes in COVID-19 patients at high risk for severe disease. In this article, we present an overview of the cytokine storm and its implications in COVID-19 settings and identify potential pathways or biomarkers that could be targeted for therapy. Leveraging expert opinion, emerging evidence, and a case-based approach, this position paper provides critical insights on cytokine storm from both a prognostic and therapeutic standpoint.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Critical Care/methods , Cytokines/blood , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Clinical Decision-Making/methods , Coronavirus Infections/blood , Coronavirus Infections/mortality , Critical Illness , Endothelial Cells/metabolism , Female , Humans , Immunocompromised Host , Interleukin-6/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Male , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , SARS-CoV-2 , Sex Factors , Thrombosis
SELECTION OF CITATIONS
SEARCH DETAIL